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Abstract. Orientational dependences of the quadrupole spin-lauice relaxation rates are 
calculated for a system of spin-312 nuclei in a single crystal subjed lo a random two-site 
exchange in a high magnetic field. A technique with which the transition probabilities per unit 
time w1 (Am = I )  and wz (Am = 2) can be measured with approximately equal accuracies 
is proposed. The possibility of exhaning fhe elements of the fluctuating elechic-field-gradient 
tensor in a crystal-fixed coordinate system together with the exchange rate from the orientational 
dependences of the spin-laltice relaxation rates WI and wz is discussed. Two examples+ 
thermal exchange belween two equilibrium sites in a temperature-independent double-poential 
well and an exchange between two sites above and below an orderdisorder phase bansit ionare 
briefly discussed. 

1. Introduction 

Quadrupole-perturbed NMR is often used to investigate the structure and dynamics of 
crystalline solids. An atom with a qoadrupole nucleus of spin I (I > 1) exhibits in 
a high magnetic field a quadrupole-perturbed NMR spectra consisting of 21 lines. The 
quadrupolar shifts of the NMR frequencies from the Larmor frequency depend on the electric- 
field-gradient (EFG) tensor at the site of the nucleus multiplied by the electric quadrupole 
moment eQ of the nucleus and on the orientation of the external magnetic field in the 
principal-axis coordinate system of the EFG tensor. The EFG tensor V is a second-rank 
tensor composed of the second derivatives a 2 V / a x i a x j  of the electrostatic potential V with 
respect to the coordinates. From the orientation dependences of the quadrupolar shifts of 
the NMR frequencies one can calculate the elements of the EFG tensor multiplied by eQ in 
a coordinate system fixed to the crystal [II. One can further calculate the principal values 
for and the principal directions of the EFG tensor. 

The principal values for and the principal directions of the EFG tensor may be related 
to the crystal structure and to the electrical environment of the observed atom. Nuclei of 
crystallographically inequivalent atoms have in general different principal values for the 
EFG tensors. Nuclei of crystallographically equivalent atoms occupying positions which are 
related by a symmetry operation have the same principal values for the EFG tensors but they 
differ in the orientations of the principal axes. The structure of the EFG tensor also reflects 
the point symmetry of the crystal at the site of the nucleus. 

Any motion which modulates the EFG tensor V causes a change in the quadrupole- 
perturbated NMR spectra. When the characteristic time r, of the motion is short compared 
with the inverse value 0;' of the Larmor frequency 0~ then the qUadNpOhI shifts of the 
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NMR frequencies are determined by the time-averaged EEG tensor (V). When r, becomes 
longer than 0;' only a partial averaging of the EFC tensor is observed, whereas at very long 
values for r, no averaging of the EFG tensor is observed at all [2,3]. 

Measurements of the spin-lattice relaxation ram are also often used to study the 
dynamics of atomic and molecular motions in solids. The spin-lattice relaxation rates 
of a system of quadrupole nuclei in solids are usually dominated by the fluctuations of 
the EFG tensors. These quadrupolar spin-lattice relaxation rates are usually measured as 
functions of temperature, in order to determine some details of the process which modulates 
the EFG tensor. 

The orientation dependences of the quadrupolar spin-lattice relaxation rates which may 
be used to determine the elements of the timedependent part of the EFG tensor in a crystal- 
fixed coordinate system have not been analysed in general. Hughes and Spencer [4] have 
studied the orientation dependence of the nuclear-quadrupole spin-lattice relaxation time in 
crystals for the case of equidistant energy levels. 

The data obtained from the orientation dependences of the quadrupolar spin-lattice 
relaxation rates are of particular importance in molecular solids in which the molecules 
or some parts of the molecules undergo some thermally activated motion. In such a case 
the part of the molecule which undergoes motion and the parameters of the motion, as 
for example the directions and magnitudes of the displacements and the time-scale of the 
motion, can be determined from the quadrupolar spin-lattice relaxation data. 

The next possible application of the orientation dependence of the quadrupolar spin- 
lattice relaxation rates is the study of the order-disorder phase transitions in solids. Also, 
in this case, the fluctuating part of the EFG tensor-which is obtained fmm the orientation 
dependences of the quadrupolar spin-lattice relaxation-may be related to the magnitudes 
and directions of the atomic displacements from their positions in the fully ordered phases. 

The fluctuating part of the Em tensor, which is obtained from the orientation 
dependences of the quadrupolar spin-lattice relaxation rates, thus represents the complement 
of the time-averaged EFG tensor which is obtained from the orientation dependences of 
the quadmpolar-perturbed NMR frequencies. Both can be used to elucidate motions in 
crystalline solids. Since we find a theoretical analysis of the orientation dependences of the 
quadrupolar spin-lattice relaxation rates quite general we decided to publish it separately. 
The applications of the proposed technique to some actual materials, especially to the 
hydrogen-bonded ferroelectrics and antiferroelectrics. will be published elsewhere. 

In this paper we first propose a technique with which the transition probabilities per 
unit time between the quadrupole energy levels wt (Am = 1) and w2 (Am = 2) can be 
measured. Next we anaIyse the orientation dependences of the spin-lattice relaxation rates of 
a system of spin-3/2 nuclei, with non-equidistant energy levels in a high magnetic field, for 
the case of a random two-site exchange. We show in which way the orientation dependences 
of the nuclear-quadrupole spin-lattice relaxation rates are related to the fluctuating part of 
the time-dependent EFG tensor, which generally allows us to discriminate between various 
dynamical processes which may occur in crystals. In particular we analyse two examples of 
the two-site exchange: a thermal exchange between two equilibrium sites in a temperature- 
independent double-potential well, and an exchange between two sites above and below an 
order-disorder phase transition. 

J Seliger and R Blinc 

2. Measurements of the spin-lattice relaxation rates 

The quadrupole spin-lattice relaxation of a system of spin-3/2 nuclei in a high magnetic 
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field has  already been treated by Andrew and Tunstall [5 ] .  They studied the spin-lattice 
relaxation for two initial conditions: 

(i) when the sample is initially in thermal equitibrium in zero magnetic field and then 
an external magnetic field is suddenly applied; and 

(ii) when a given NMR transition is initially saturated by a strong radio-frequency 
magnetic field. 

Here we analyse a third case in which the sample is first in thermal equilibrium in a 
high magnetic field and then a short exciting @-pulse is applied to the sample, followed by 
a detection 90" pulse after a time z (figure 1). Both pulses are applied at the frequency 
of the central -112 to 112 transition. The -112 to 112 transition frequency is not shifted 
from the Larmor frequency in the first-order perturbation theory. It is therefore only weakly 
dependent on the orientation of the sample in an external magnetic field and is thus easy to 
observe, 

1-3/2> 

TIME - 
I312> 

Figure 1. Pulse sequence for the measurement of 101 

and W I .  

Figure 2. Population of the energy levels and the 
bansition probabilities per unit lime klween tho energy 
levels of a system of quadrupole spin-3/2 nuclei in a 
high magnetic field. 

The quadrupolar spin-lanice relaxation of a system of spin-312 nuclei in a high magnetic 
field depends on two pairs wl and wf and w; and w: of the transition probabilities per unit 
time. This situation is shown in figure 2. The rate equations governing the populations of 
the quadrupole-perturbed Zeeman energy levels read 

(d/dt)N, = -(w: + w ; ' ) N ~  + wYN~ + w;N3 

(d/dt)N2 = -(w; + UI;)N~ + wYNi+ wU,N~ 

(d/dt)N3 = -(w: + wY)N, + w;N~ + w!N1 

(d/dt)N4 = - (w; t w;)N4 t W ~ N J  t w : N ~ .  

The four transition probabilities per unit time w;. w:, w; and w: are not independent. 
After a long time a Boltzmann distribution is established over the four energy levels with 
populations 

NI = i N ( 1 - 3 6 )  4 Nz= tN(1-6)  N3=$N(1+6) N q = ~ N ( I + 3 6 ) .  

Here 

6 = f i o ~ / 2 k T  (2) 
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is assumed to be much smaller than one and N is the number of observed nuclei 
in the sample. A Boltzmann distribution is established over the four energy levels if 
w;/w;' = 1 - 26 and w;/w;' = 1 - 46. We may thus write 

J Seliger and R Elinc 

w; = Wl(1 -6)  w;'=w1(1 + 6 )  w; = wz(1 -26) w; = wz(l t 26). (3) 

Here the transition probabilities per unit time wl and wz correspond to an infinite temperature 
when 6 = 0. Further we define three population differences: X = N2- NI, Y = N3- NZ and 
Z = N4 - N3 (cf [5]). The time derivatives of X, Y and Z are obtained from expressions (1) 
as 

dX/& = N6wi - (2wj+ WZ)X + WZZ 

dY/&=-N6(wi -2~z) -2wzY + ( W I  - m ) ( X + Z )  (4) 

dZ/dt = NSwi - ( 2 ~ 1  + WZ)Z + WZX. 

The solutions for expressions (4) are: 

X(t) = i6N + i(X(0) - Z(0))exp(-2wlt - 2wzt) + i(X(0) + Z(0) - SN) exp(-2wlt) 

Y(t) = $N+i(SN-X(O)-Z(O)) exp(-2wlt)+i(2Y(O)+X(O)+Z(O)-SN) exp(-2w$) 

Z(t) = iSN - i(X(0) - Z(O))exp(-2wlr - 2 w ~ t ) +  i(X(O)+Z(O) -SN)exp(-2wlr). 

(5) 

The NMR signal following a 90" pulse applied at the -1/2 to 1/2 transition frequency is 
proportional to Y. The initial values X(O), Y(0) and Z(0) are the ones obtained immediately 
after the exciting @-pulse. The populations of the four quadrupole-perturbed Zeeman energy 
levels are immediately after the @-pulse equal to: NI = iN(1-  36), Nz = aN(1-6cosO), 
N3 = aN(1 +6cos@), N4 = lN(1 + 36) and thus the initial values X(O), Y(0) and Z(0) 
read: X(0) = :NS(3 -cos@). Y(0)  = +NScos@ and Z(0) = iNS(3 -cos@). With these 
initial conditions we obtain: 

Y ( r )  = iN6  - $N6(1 -cos~)[exp(-2wIr)+exp(-2wzt)]. (6) 

The dependence of the NMR signal on the time t between the exciting &pulse and the 
detection 90' pulse is thus double-exponential with relaxation rates 2wl and 2wz. The 
weight factors of the two exponential terms are equal. Thus from the t-dependence of the 
NMR signal the two transition probabilities per unit time W I  and wz can easily be calculated. 

For the initial conditions of the results in [SI our calculations agree with those published. 
It should be noted that our results are valid only when the three transition frequencies 

v - 3 ~  IO -1p. V-112 to 112 and v i l a  10 3p are well separated. Howeverthis is the most common 
situation in quadrupole-perturbed NMR and only at some special orientations of the external 
magnetic field do some of the transition frequencies overlap. 

3. Calculation of W I  and wz 

We shall calculate WI and wz in the approximation of infinite temperature. In this 
approximation we are dealing with the Hamiltonian H 

H = HZ + HQ(f) = ffZ + (HQ) + 6HQ(t)  (7) 
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in which Hz = -h6& is the Zeeman part and HQ(t) = (HQ) + 6HQ(t )  is the time- 
dependent quadrupolar part which can be treated as a perturbation. In a coordinate system 
in which the z axis is chosen as the quantization axis, HQ(t)  reads as 

Here V d f )  = VzzO), V+i(t) = V A t )  f ivy&) and V*z(t) = $V,,(z) - V,,(t)lf iV.& 
are the combinations of the elements of the time-dependent EFG tensor which we write as 
KO) = (VI)  + S W ) ;  I = 0, 41, f 2 .  The two parts (HQ) and 6 H Q ( t )  of the Hamiltonian 
are obtained by dividing expression (8 )  into time-averaged and fluctuating parts. 

The transition probabilities per unit time W, and wz are now calculated under the 
assumption that a lattice motion (two-stage exchange) modulates the EFG tensor V, 
which results in the time-dependent part 6HQ(t )  of the Hamiltonian. This is in fact the 
approximation of infinite temperature since in this approximation the populations of the 
four energy levels approach the value $A' after a long time. The transition probability per 
unit time wtl between the kth and the Ith energy levels, which is a consequence of the 
fluctuating part of 6 H ~ ( t )  of the Hamiltonian is given as [2] 

1 0 0  
wkl = i;' ( (sHQ(Of)t l (sHQ(-t)) ta  exP(iwk&+ (sHQ(O))lK(sHQ(-t))kf exP(-iwkfO) d. 

(9) 

Here (. ..) represents an ensemble average. By inserting 6H&) in the form of ( 8 )  into 
expression (9) we obtain the two transition probabilities per unit time, W I  and wz as 

(loa) 

wz = $ (~)2~m(6"-z(o)sv+z(- t )exp(2iw~T)  + sV+z(O)SV-2(-t) exp(-2iat)) dt. 

(lob) 

For a random exchange between two states A and B, which are not necessarily equivalent 
the autocorrelation function (6V,(0)8Vl(-r)) reads [6] as 

(GVr(O)SV,(-t)) = PAPEIVP - V?lzexp(-Wt). (11) 

Here PA and PB are the probabilities of finding the system in the states A and B, respectively, 
VA and VB are the Ith combinations of the EFG tensor elements ( I  = 0, f l ,  f 2 )  
corresponding to the states A and B and W = UJAB + WBA is the sum of the transition 
probability per unit time from the state A to the state B (WAB) and of the transition probability 
per unit time from the state B to the state A (WBA). From expressions (IO) and (11) we 
obtain 

W I  = f i r ' p ~ p ~ ( ~ : ~  + u ; ~ ) F ( ~ L ,  W )  

wz = ) r r Z P A P d ~ ( u X ,  - uYyY + u & I F ( ~ L ,  w). (12) 
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Here 

J Seliger and R Blinc 

Ujj = (eQ/h)(V;?  - V,”) 

and 

F(X, W )  = W-l/(l + X 2 w - 2 ) .  (14) 

The transition probabilities per unit time are now expressed in terms of the elements of the 
difference of the two EFG tensors V A  - V a  in a coordinate system in which the z axis 
points in the direction of the extemal magnetic field. 

4. Orientation dependences of 201 and wz 

Let a, b and c be the axes of an orthogonal coordinate system fixed to a crystal. In the 
case of an orthorhombic crystal the axes a. b and c may be the crystallographic axes. Let 
us further assume that the external magnetic fields lies in the a-b plane and forms an angle 
0 with the a axis (figure 3). Then the transition probabilities per unit time, W I  and w ~ .  as 
functions of 0 read as 

w I ( @ )  = $ n Z P A f e F ( w ,  w ) ( c ~  + ~ ~ c o s 2 ~ + ~ ~ s i n 2 ~ + ~ ~ c o s 4 ~ + + ~ s i n 4 ~ )  

w2( 0) = $T’PAPS F(2w~.  W)(Ci + C: cos 20 + Sz sin 20 + C: cos 40 + S i  sin 40). 

Here 

(15) 

and 

ci A[ I8UL + (U00 - Ubb)’ + 4u& + 16(U2c + utc)] 
ci = ~ [ 3 u c c ( u a 0  - Ubh) - 4(u:c - s: = t u c c U o b  - uacubc (17) 

c4‘ & [ ( u o a  - ubb)’ - 4uOzb1 s i  = i ( lab(uaa - u b b ) .  

The Fourier coefficients C! and S,‘ which are expressed in terms of the elements of the 
tensor U can not be directly calculated from the experimental data. Measurements give 
the @-dependences of wI and w2 which give-when expanded in the Fourier series-the 
Fourier coefficients A: and B: 

w 1 ( 0 )  = A; + A i  cos24 + B: sin20 + AAcos49 + Ba sin40 

w 2 ( 0 )  = A:+A:cos2@+ BZs in20+A~cos40+  B:sin40. 
(18) 

The Fourier coefficients A: and B? are related to C? and S,‘ by A! = K,C: and BY = Kq$, 
where 

Kq = f s ’ f A f B F ( q W L ,  w). (19) 
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Figure 3. The direction ( z )  of lhe exlemal magnetic 
field B in a crystal-fixed coordinate system U ,  b. C. 

As can be seen from expressions (16) and (17) S j  = -4Si and Cd = -4C:. Thus 
IB:l > 41.6421 and /All  > 41A:I. These last inequalities, which can be used to distinguish 
between W I  and w2. follow from the fact that F ( 2 w ~ ,  W )  e F(wL, W ) .  

Expressions (16) contain two pairs of equations with two unknowns. The solutions of 
these are 

Figure 4. Schematic picture of a double-potential well. 

From the Fourier coefficients A: and 5?, which can be determined from the experimental 
data, one can thus calculate absolute values for &(/ob, &(Ua. - Ubb). f l u a c ,  and 
&Ubc PIUS the relative Signs Of uQb and U,, - 

When the extemal magnetic field B is in the a-c plane or in the 6-c plane the 
corresponding Fourier coefficients Cf and S: of the Fourier expansions of w1 and w2 

can be expressed in terms of the elements of the tensor U by cyclic permutations of indices 
in expressions (16) and (17). 

The angular dependences of W I  and w2 when B is, say, in the a-c plane give similarly. as 
above. absolute values for &Ua,, &(Uao-Ucc), -Jir;Uob and &ubc plus the relative 
signs of Uoc and U,, - U,, and of U& and &. These data together with the data from the 
spin-lattice relaxation measurements when B is in the a-b plane are in principle sufficient to 
calculate the tensor UR, VR = &&U = f&(eQ/h)(VA-VB). The proper sign + or 
- and the scaling factor f i  can not be determined from the orientation dependences of the 

and Of uac and uac. 
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spin-lattice relaxation rates. The factor K , ,  K I  = $S*PAPBW/(W~ +U,?), depends on the 
occupation probabilities PA and PB = 1 -PA and on the exchange rate W, W = WAB+ WBA, 

between the states A and E. 
When the tensors VA and VB are known the tensor k f i ( V A  - VB) determined from 

the orientation dependences of the spin-lattice relaxation rates can be used to see whether 
the fluctuations of the EFG tensor are indeed the dominant relaxation mechanism. If this is 
the case K I  can be calculated and if the occupation probabilities PA and PB are known, say 
from the temperature dependence of the time-averaged EFG tensor (V) = P A V ~  + P B V ~ ,  
the exchange rate W can be calculated. 

The ratio K ~ / K I ,  K z / K I  = (Wz + o2)/(Wz + b:), can be obtained by comparing 
the Fourier coefficients A: and B,! to the Fourier coefficients A: and 8;. The Fourier 
coefficients A? can be for example expressed as A f  = (Kz /K) ) (K lC; )  and the factors 
KIC: can be calculated from the elements of the tensor &&U. The ratio K 2 / K ,  is, in 
the case of a fast exchange (W >> N). equal to one whereas it is, in the case of a slow 
exchange ( W  << N), equal to 4. In the transition region when W is close to W L  the ratio 
K2/K1 can be used to determine the exchange rate W, and if PA and PB are known also, 
to determine the tensor U = (eQ/h)(VA - VB). 

In any case a tensor pmportional to VA - VB and the ratio K ~ / K I  can be determined 
from the orientation dependences of the spin-lattice relaxation rates when the spin-lattice 
relaxation rates are dominated by the fluctuations of the EFG tensor. The ratio K 2 / K ,  
tells us whether the exchange rate W is fast or slow compared with the Larmor frequency 
OL. The tensor + f i ( V A  - VB) can, together with the time-averaged EFC tensor (V), 
(V) = P A V ~  + P B V ~ ,  be used to study the motions in solids and to discriminate between 
different exchange mechanisms. 

J Seliger and R Blinc 

5. Application to some typical examples 

5.1. Motion in a temperature-independent double-potential well 

We first assume that the time dependence of the EFG tensor is the consequence of a thermal 
motion between two equilibrium sites in a double-potential well. The potential well is 
shown in figure 4. The energy separation A E  of the sites A and E, as well as the barrier 
height H are assumed to be temperature independent. The barrier height H is also assumed 
to be much higher than kT so that the transition probabilities per unit time WAB and WBA 

are functions of temperature, given by the Arrhenius-type expressions 

WAB = woexp(-H/kT) W B A  = woexp(-(H - AE)/kT). (21) 

The occupation probabilities PA and PB are given by the Bolizmann distribution as 

PA = 1/(1 + exp(-AEjkT)) PB = exp(-AE/kT)/(l +exp(-AElkT)). (22) 

As a result of the measurements of the orientation dependences of the quadrupole-perturbed 
NMR frequencies and quadrupole spin-lanice relaxation rates, we wish to determine the 
parameters AE and H of the double-potential well, the EFG tensors VA and VB multiplied 
by eQ/h, and the transition probabilities per unit time WAB and wBA. 

In the limit of fast exchange when W = WAB + WBA >> N the quadrupole-perturbed 
NMR frequencies depend on the time-averaged EFG tensor (V), (V) = P A V ~ +  P B V ~ .  The 
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tensor ( e Q / h ) ( V )  can be determined from the orientation dependences of the quadrupole- 
perturbed NMR frequencies by the method of Volkoff [11. 

If the double-potential well is asymmetric ( A E  # 0) then from the temperature 
dependenceofthe tensor ( e Q / h ) ( V )  the tensors ( e Q / h ) V A  and ( e Q / h ) V B  and theenergy 
separation A E  = EB - E A  can be determined. 

On the other hand, from the orientation dependences of the spin-lattice relaxation rates 
the tensor U, = i & ( e Q / h ) ( V A  - V B )  can be determined. Thus KI = $rzPAP~w- '  
and the exchange rate W can be calculated. From the temperature dependence of W 

W = woexp(-H/kT)(l+ exp(AE/kT)) (23) 
one can further calculate the banier height H and the constant wo. 

If the double-potential well is symmetric (AE = 0) the time-averaged EFG tensor (V) ,  
(V)  = i (VA + VB), does not depend on temperature and the tensors ( e Q / h ) V A  and 
( e Q / h ) V B  can not be determined, as before. They can, for example, be obtained by 
cooling the sample to a low temperature, at which the exchange between the sites A and B 
is slow on the NMR time scale. In this case two sets of quadrupole-perturbed NMR lines are 
observed corresponding to the states A and B. Another possibility is that the principal values 
for, or some symmetry properties of the EFG tensors V A  and V B  in the studied compounds, 
are known from the experimental studies of some closely related compounds. Then Kt is 
adjusted in such a way that the principal values for or some symmetry properties of the 
tensors ( eQ/h)VA.B  = (V)  match the expected ones. The exchange rate W 
and the barrier height H are further determined in the same way as before. 

5.2. An order-disorder phase transition 
Next we assume that the two-stage exchange is associated with an order-disorder phase 
transition. Above the transition temperature r, some objects (atoms, groups or molecules) 
move between two equivalent equilibrium sites whereas below T, the two sites become 
inequivalent and their populations can be expressed in terms of an order parameter S. 
For one half of the objects the occupation probabilities PA and PL are below T, given as 
'A  ' - - '(1 2 + S) and PA = $(l  - S). For the other half of the objects the occupation 
probabilities PA" and P[ are below given as P i  = PL and P[ = PA. The ratio of the 
transition probabilities w-/wBA is in the former case equal to (1 - S)/(1+ S), whereas in 
the latter case it is equal to ( I  + S)/(1 - S). The exchange rates W = WAB + WBA are in 
both cases equal. 

the time-averaged EFG tensor (V) ,  (V)  = f(VA + VB),  is temperature 
independent whereas below r, two time-averaged EFG tensors (V)A and (V)B 

Above 

( v ) A  = PAVA + P A v B  = $(VA + vB) + ( S / 2 ) ( V A  - vB) 
(v)B = p i V A  + PivB = $(v" + VB) - ( s / 2 ) ( V A  - vB) (24) 

are observed for the case of a fast exchange. Far below TI the time-averaged EFG tensor 
(V) ,  is approaching V A  and (V) ,  is approaching V B .  Thus the tensors ( e Q / h ) V A  
and ( e Q / h ) V B  can be determined from the orientation dependences of the quadrupole- 
perturbed NMR frequencies far below &. When these two tensors are known the parameter 
KI, K I  = krrz(l - S')F(WL, W ) ,  can be calculated, and if the order parameter S is known 
also the exchange rate W can be calculated. The order parameter S can in fact be determined 
from the splitting of the quadrupole-perturbed NMR lines which overlap above r, and split 
below &. The order parameter S can also be determined from the temperature dependence 
of some other physical quantities-for example, spontaneous polarization in fermelecmcs- 
which depend on S. 
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6. Conclusions 

Spin-lattice relaxation of a system of spin-3/2 nuclei with non-equidistant energy levels, 
which are subject to a random exchange between two states A and B has been studied. It 
is shown that if the spin system is excited by a radiofrequency pulse at the frequency of 
the -112 to 112 transition then the NMR signal measured after a 90" pulse is applied at 
the same frequency, at a time f after the exciting pulse, depends double-exponentially on f. 
The relaxation rates are 2 w l  and 2wz where W I  and wz are the transition probabilities per 
unit time between the quadrupole-perturbed energy levels corresponding to Am = 1 and 
Am = 2, respectively. If the spin system is in a thermal equilibrium with the crystal lattice 
before the exciting pulse is applied then the two exponential terms have the same weight 
factors. Thus from the f dependence of the NMR signal the two nansition probabilities per 
unit time w, and w 2  can be determined with approximately equal accuracies. 

The transition probabilities per unit time W I  and wz are expressed in terms of the 
elements of the tensor U = e Q / h ( V A  - VB), occupation probabilities PA and PB, and the 
exchange rate W, W = WAB + WBA. Here VA and V B  are the EFG tensors corresponding 
to the states A and B which are in general inequivalent 

It is shown that from the orientation dependences of W I  and wz a tensor UR, UR = 
& f i [ ( e Q / h ) V *  - ( e Q / h ) V B ]  can be calculated. Here K1 = $nzPAPsW/(W2 +ut). 
The temperature dependence of the tensor UR, together with the temperature dependence 
of the time-averaged EFG tensor (V)  multiplied by ( eQ/h) ,  which is obtained from the 
orientation dependences of the quadrupole-perturbed NMR frequencies, can be used to find 
the parameters of the two-state exchange and to discriminate between different exchange 
mechanisms. 

Two examples-a two-state exchange in a temperature-independent double-potential 
well and a two-state exchange associated with an order-disorder phase transition-have 
been briefly discussed. 

J Seliger and R Blinc 
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